
Stable roommates problem solver

Filip Bártek

September 28, 2014

1 Problem de�nition

Let's have n participants. Each participant knows some of the participants, let's
call these her potential partners. Each participant has a linear ordering of her
potential partners according to preference.

Note that a participant may or may not consider herself a potential partner,
i.e. the relation of potential partnership needn't be irre�exive.

A matching is an equivalence relation on participants that has classes of size
at most 2, i.e. assigns each participant one or none partner. Matching must
assign a potential partner to each of the participants.

An instability in a matching is a pair of participants each of whom prefers
(according to their personal preference relations) the other to their current part-
ner.

A stable matching is a matching that doesn't admit an instability.
In stable roommates problem (SRP), given preferences of each participant,

the task is to �nd a stable matching.

1.1 Perfect matching

A perfect matching is a matching in which every participant is assigned some-
body else.

Once we can solve general SRP, we can force a perfect matching by making
sure that no participant considers herself a potential partner.

2 Constraint model

In this section we'll describe a model for SRP instance on n participants.
We'll use the symbol Nn to denote the set {1, . . . , n}. Each participant is

uniquely identi�ed by a number from Nn.
Note that the choice of variables and constraints corresponds to the capabil-

ities of clpfd, a library that is used prominently in the implementation of the
solver.

1



2.1 Variables

Problem instance We'll represent an instance of SRP with n participants
as a collection of preference lists P = (P1, . . . , Pn). Pi is a preference list
expressing preferences of participant i. It's a ki-tuple of participant identi�ers
(i.e. numbers from Nn). All potential partners of participant i are listed in Pi

in order of decreasing desirability without duplicities.

Problem solution m : Nn → Nn assigns each participant her partner.

Auxiliary variables Let s : Nn × Nn → Nn be a score function. s(i, j)
represents how desirable participant j is according to participant i. The lower
the score, the more desirable participant j is.

s is de�ned uniquely for a given instance P . For every participant i:

• j-th potential partner is assigned score j

• every participant which is not a potential partner is assigned a score n

As a convenience, let s̄(i) denote the score that participant i assigns to her
partner.

2.2 Constraints

Since the score function s depends uniquely and trivially to the problem instance
P , construction of s from P is realized using standard Prolog code (without the
use of clpfd) and as such, I'll leave out formal de�nition of the corresponding
constraint.

Similarly, the properties of P are not enforced formally so I'll leave out their
formal de�nitions. Informal description of these properties are available in the
previous section.

The following constraints constrain the solution m based on P and s:
Constraint Explanation

∀i.m(i) ∈ Pi Matching satis�es potential partners
∀i, j.m(i) = j ⇔ m(j) = i Matching is symmetric
∀i.s̄(i) = s(i,m(i)) s̄ corresponds to s and m
∀i, j.s̄(i) ≤ s(i, j) ∨ s̄(j) ≤ s(j, i) All pairs are stable

Note especially the last of these constraints as it captures the essence of the
problem, that is the requirement of stability. An instability occurs when a pair
of participants prefer each other to their partners. The constraint ensures that
in each pair of participants, at least one of them prefers her partner (i.e. assigns
her a lower score) to the other participant.

2



3 Implementation

I've implemented the constraint model introduced in the previous section using
SICStus Prolog and its clpfd library. The implementation is available in the
attached �le srp.pl.

3.1 Usage

The main entry point is the predicate srp/2. Its typical usage is srp(Preferences,
Matching), where Preferences is a fully instantiated list of ordered lists of
potential partners and Matching is unbound. If a solution of SRP instance
described by Preferences exists, it is uni�ed with Matching. Otherwise srp

fails.
Internally, srp uses clpfd library to search for the solution. The search-

ing procedure executed by clpfd:labeling/2 can optionally be customized by
passing a list of options in the �rst argument of labeling. This argument of
labeling is exposed in the third argument of the extended srp/3. For example,
one may execute srp(Preferences, Matching, [ffc, assumptions(K)]).

3.2 Example instances

Examples of problem instances for the solver are included in �le srp.pl in unit
tests for srp/2 (in a block starting with statement :- begin_tests(srp_2).).

3.3 Correctness

Correctness of the implementation was assessed using a set of tests on small
manually constructed and solved SRP instances (up to size 8).

The tests are bundled in the source �le srp.pl and can be accessed using
plunit library interface (typically by executing plunit:run_tests.).

3.4 Performance

I've examined the performance of the solver using various problem instances
(esp. of various sizes) and search strategies.

3.4.1 System con�guration

The performance measurements were performed on a computer with the follow-
ing con�guration:

Model HP Compaq 6510b

CPU Intel Core2 Duo T8100 2.10 GHz

RAM 2.50 GB

Operating system Windows Vista Business 32-bit

SICStus Prolog 4.2.3

3



3.4.2 Instance generation

For the purposes of measuring performance of the solver, instances of SRP
were generated randomly in the following manner: for a given n, each of the
n participants' preference lists is a random permutation of Nn such that every
possible permutation occurs with equal probability.

3.4.3 Measurement procedure

The following instance sizes (values of n) were examined: 0, 1, 2, 4, 8, 16, 24,
32, 40, 48, 64, 72, 80 and 88. I didn't proceed past the size 88 because at n = 96
the solver failed because of insu�cient memory.

For every examined value of n, 10 random instances were generated.
For sizes up to 64, each of these 10 instances was solved using each of the

three relevant basic search strategies o�ered by clpfd:labeling/2:

• leftmost,

• ff (�rst-fail) and

• ffc (most constrained).

Since leftmost performed time-wise signi�cantly worse than ff and ffc

(see �gure 5), I left it out of measurements on sizes larger than 64.
Two values were measured: time to �nd a solution and number of assump-

tions taken in �nding the �rst solution.
Time was measured using SICStus Prolog built-in predicate statistics/2

with keyword runtime. The solving procedure was repeated 100 times on in-
stances of size at most 32, 10 times on instances of size between 40 and 56 and 1
time on instances of size above 56. (see �gure 1). The running times discussed
further on are averages across these executions.

Assumptions are the choices made by clpfd:labeling/2 during the search
for a solution. Their number is extracted from the search procedure using the
option assumptions(K).

In all cases, the solver was only run until it found any solution or concluded
that no solution exists for the given instance. Rationale: since there is no de�ned
distinction between the valid solutions, I assume that the user of the solver will
typically be satis�ed with any valid solution, or knowledge of its absence.

The numbers of assumptions were only measured on soluble instances. For
all instance sizes, at least 5 of the 10 generated instances had a solution (see
�gure 2).

3.4.4 Results

The raw measured data can be examined in the attached �le data.csv.

4



0 1 2 4 8 16 24 32 40 48 56 64 72 80 88

Size (participants)

E
xe

cu
tio

ns

0
10

10
0

Number of executions of solving procedure

Figure 1: Number of executions of solver for time measurement

5



0 1 2 4 8 16 24 32 40 48 56 64 72 80 88

Size (participants)

S
ol

ub
le

 in
st

an
ce

s 
(o

ut
 o

f 1
0)

0
5

7
8

9
10

Portion of soluble instances

Figure 2: Number of soluble instances

6



●●● ●
●

●

●

●

●

●

●

●

0
50

10
0

15
0

20
0

Size (participants)

N
um

be
r 

of
 a

ss
um

pt
io

ns

●●● ●
●

●

●

●

●

●

●

● ●

●

●

Strategy

leftmost
ff and ffc

0 4 8 16 24 32 40 48 56 64 72 80 88

Average number of assumptions in search for solution

Figure 3: Average number of assumptions

Assumptions The average numbers of assumptions made in the search for
the �rst solution are shown in �gure 3. The averages run across the soluble
instances of a given size (at least 5 and up to 10, as indicated in 2).

Note that the numbers of assumptions happen to match for strategies ff and
ffc (on an instance-to-instance basis, not only the averages). Since ffc chooses
the most constrained variable where ff simply chooses the �rst declared vari-
able, I suppose that the implementation simply happens to declare the variables
in descending order of number of suspended constraints.

In the chart you can see that the number of assumptions rises with instance
size and rises more quickly for the strategy leftmost. This is to be expected
since ff and ffc use more elaborate heuristics for lowering the expected number
of assumptions.

You can see the dispersion of number of assumptions among instances of a

7



●

●

●

0 1 2 4 8 16 24 32 40 48 56 64 72 80 88

0
50

10
0

15
0

Assumptions with strategy ff

Figure 4: Dispersion of number of assumptions with search strategy ff

given size for search strategy ff in �gure 4.

Running times Average running times for various instance sizes and search
strategies are shown in �gure 5. The averages run across 10 instances of a given
size.

As expected from the numbers of assumptions, the strategies ff and ffc per-
form similarly well. Their running times are hardly distinguishable in the chart.
This suggests namely that the overhead of using the more complex heuristics of
ffc over ff is negligible.

You can also observe a steep jump in running time of the strategy leftmost

at instance size 64. Since ff and ffc adapt to larger instance sizes more
smoothly and perform well even on smaller instances, they appear to be better
choices in general for this solver.

8



●●● ● ● ● ● ● ●

●

●

●

0
20

00
40

00
60

00
80

00

Size (participants)

T
im

e 
(m

s)

●●● ● ● ● ● ● ●
● ●

●

●

●

●

●●● ● ● ● ● ● ●
● ●

●

●

●

●

Strategy

leftmost
ff
ffc

0 4 8 16 24 32 40 48 56 64 72 80 88

Average solving time

Figure 5: Average solving time

9



●● ●● ● ●
●

●●

●●

●

0 1 2 4 8 16 24 32 40 48 56 64 72 80 88

0
10

00
20

00
30

00
40

00

Time with strategy ff

Figure 6: Dispersion of running time with search strategy ff

The running times di�er a lot among instances of a given size. As an example
a box plot of running times with strategy ff is shown in �gure 6.

Note that SRP was shown to be soluble in quadratic time.1

4 Conclusions

It appears that the delivered implementation of SRP solver can be used for
fast solving of problem instances of sizes up to approximately 88. The mea-
sured average time for solving an instance of size 88 with search strategy ff is
approximately 2 seconds.

1Source: Wikipedia - Stable roommates problem

10



The search strategies ff and ffc perform signi�cantly better than the strat-
egy leftmost on instances of size at least 48.

Glossary

clpfd Constraint Logic Programming over Finite Domains. 1�3

ff �rst-fail. 4, 7, 8, 10

SRP stable roommates problem. 1�4, 10

11


	Problem definition
	Perfect matching

	Constraint model
	Variables
	Constraints

	Implementation
	Usage
	Example instances
	Correctness
	Performance
	System configuration
	Instance generation
	Measurement procedure
	Results


	Conclusions

